

PROCESS R&D FOR DROPLET-PRODUCED POWDERED MATERIALS

JOSEPH LIBERA (PI)

Project ID: BAT315

2022 DOE Vehicle Technologies Office Virtual Annual Merit Review (AMR), June 1-4, 2022,

Overview

Timeline

- Project Start Date: September 2016
- Project End Date: September 2022

Budget

- Total project funding:
 - \$400K in FY21

Barriers

- Cost of high-energy Li-ion
- Life

Partners

- Cabot Corporation
- ORNL, LBNL
- Purdue University

Supporting battery research for:

DOE Battery Research Community

Objectives - Relevance

- To develop aerosol processes to produce cathode active materials, solid electrolytes, additive particles for life extension and filler particles for polymer composites.
- The relevance of this task to the DOE Vehicle Technologies Program is:
 - This synthesis technique has the potential to provide large cost reduction through continuous high-volume production methods.
 - The high purity and crystallinity of FSP materials has the potential to improve performance for the same materials synthesized by other means.

Approach and Strategy

- Flame Spray Pyrolysis is a proven industrial technology for commodity scale production of numerous simple compounds (TiO₂, C black, SiO₂). The ANL FSP facility provides a highly instrumented pre-pilot powder production facility for the development and optimization of aerosol production of powders. This heavily instrumented facility provides in-operando scientific feedback to enable rapid materials development and fundamental understanding of this complex manufacturing process.
- Complimentary aerosol techniques: (a) Spray Pyrolysis, (b) Slurry Flame Spray Pyrolysis, (b) Slurry Spray Pyrolysis, and (c) Dry Aerosol Calcination
- Maintain a close relationship with our industrial partners to assure we follow sensible routes for potential commercialization.

Approach - Milestones

FY21	Design and build scale up for 500 g/hour FSP production	Ongoing	July-2022
	Single Crystal Cathode development	Ongoing	Sept 2022
	Dry Aerosol Calcination	Complete	Jan 2022
	Feasibility study for LLZO green powder based SSB architectures	Ongoing	Sept 2022

Technical Accomplishments And Progress Overview - Summary

- Completed Design and Major Procurements for 500 g/hour upscale of the FSP synthesis facility.
- Added dry aerosol processing capability and tested dry aerosol calcination of spray pyrolysis green powders
- Optimized calcination protocol for layered phase formation of high Ni spray pyrolysis green powders.

Technical Accomplishments And Progress Overview – FSP Facility Scaleup

- Design for 500 g/hour facility completed.
- Procurement of baghouse completed and received in May 2022.
- 500 g/hour production for LLZO
- 250 g/hour production for additive nanoparticles such and NCM 111, alumina
- Back-pulsing baghouse for continuous operation.
- Engineered controls for nanopowder handling.
- Positive pressure combustion to eliminate blower suction requirement for collection.
- Uses the same liquid feed, combustion gas feed and burner as original 50 g/hour system.
- Close-coupled gas quenching system.
- No tube furnace due to size and space restrictions

Technical Accomplishments And Progress Overview – Dry Aerosol Calcination Capability

- Dry Aerosol Calcination concept:
 - Contactless sintering preserves particle morphology during sintering
 - Rapid sintering optimized gas exchange per particle
 - Reduces porosity and surface area of individual particles or clusters.
- Aerosol loading is 2-325 g/m³

Technical Accomplishments And Progress Overview – Dry Aerosol Calcination Capability

- Dry Aerosol Calcination was tested on Spray Pyrolysis NCA green powder
- The result was compared to a 12 hour static calcination in a muffle furnace
- The residence time of the DAC aerosol in the tube furnace is <5 sec.
- With the tube furnace at 950°C the dry aerosol shows an similar outcome as the 12-hour static calcination.
- Densification and surface area reduction was demonstrated while preserving the original particle morphology and avoiding sintering
- Layered phase not achieved. May require 2nd pass with inter-stage gas exchange to remove CO₂ and water from 1st pass.

Technical Accomplishments And Progress Overview - LNO by Spray Pyrolysis Particle Morphology

- Green powders were synthesized using Spray Pyrolysis of nitrate solutions of Li, Ni and Al or Mg.
- Calcination of Al- and Mg-doped Lithium Nickel Oxide was optimized
- 700°C vs 730°C reveals a threshold to crystallinity and brittleness. 730°C calcination results in substantially more fines after de-agglomeration processing (mortar milling). Mg doping results in much higher brittleness than Al doping.

Technical Accomplishments And Progress Overview - LNO by Spray Pyrolysis Calcination Properties

- 700°C vs 730°C reveals lesser crystallinity and slight impurity. Despite this, the 700°C samples exhibit better capacity retention compared to 730°C.
- Higher Ni samples in aerosol generated green powders require lower temperature to achieve good layered phase.

Technical Accomplishments And Progress Overview - LNO by Spray Pyrolysis Battery Performance

- Half-cell data for cycling between 2.7-4.3V with 6.8 mg/cm² loading
- 700°C vs 730°C reveals lower capacity fade for both Alor Mg-doped LNO, possibly due to more fines in the 730°C calcined samples.
- Mg-doped LNO has lower starting capacity than Aldoped LNO but exhibits a higher capacity retention.

Collaboration and Coordination with Other Institutions

Cabot Corp. is a continuing partner in low-Co cathode active phase development.

• ANL completed sponsorship a CRI Innovator Volexion who graduated to startup status. Volexion develops novel grapheneactive material composite cathode architectures.

 Collaboration with Purdue University for the development of polymer/particle composite electrolyte.

Remaining Challenges and Barriers

Optimization of aerosol processes for cost-competitiveness.

Proposed Future Research

- Develop additive particles for extension of battery life
- Develop filler particles for polymer composite electrolyte applications
- Develop dry aerosol processing for reduced cost cathode thermal processing
 - Develop coating add-ons to allow for life-extension over-coating of cathode powders
- Provide production of LLZO with 500 g/hour FSP unit.

Summary Slide

- Completed design and major purchases for 500 g/hour FSP scale up unit.
- Installed and commissioned dry aerosol processing capability and demonstrated operation for cathode thermal processing.
- Demonstrated Al- and Mg-doped LNO synthesis using Spray Pyrolysis.

Acknowledgement

■ The PI gratefully acknowledges Peter Faguy and Dave Howell for their continued support of aerosol processing research for energy materials

